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are due to the oxygen atoms of disordered [H+-AiFhO] ions. 
At least one of these ions (an HsCh+ ion) is not disordered 
yielding reasonable thermal parameters and an 0(I)-O(I) 
hydrogen bonded distance of 2.45 (5) A, similar to those found 
in other structures containing this ion.16 Hydrogen bonds are 
formed between this ion and Cl(ID) [3.20 (2) A] and C1(2A) 
[2.99 (2) A]. Partially occupied oxygen atoms [0(2) and 0(3)] 
were also placed from difference Fourier maps, their positional 
and thermal parameters refined with their occupancy factors 
fixed at 0.5. Reasonable temperature factors were obtained 
in this way, but full confidence cannot be placed on the values 
for the parameters of these atoms. In spite of the difficulties 
arising from the disordering problem of the [H+-MH2O] ions, 
the reasonable values obtained for the Rh-Rh bond distances 
and the overwhelming chemical evidence4'8 give us confidence 
that the formal oxidation level is indeed 1V2 for each of the four 
Rh atoms in the tetranuclear unit, giving an overall charge of 
+ 5 to the Rh4(bridge)8Cl5+ unit. This requires the formula 
to be H3[Rh4(bridge)8Cl](CoCLt)4-HH2O, where n is at least 
3 and more likely 6. 
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Selective Enhancement of Bimolecular Reaction Rates 
by Over Three Orders of Magnitude Using 
Low Intensity CW Infrared Laser Radiation 

Sir: 

Chemists are understandably intrigued by the possibility 
of selective unimolecular dissociation processes using pulsed 
high power infrared lasers.1 The fervor in this field somewhat 
overshadows the equally interesting possibility of utilizing 
infrared lasers to selectively modify bimolecular reaction 
rates.2 We report here the use of a relatively low power (34 
W/cm2) CW infrared laser to increase selectively the rate 
constant of a single bimolecular reaction by three orders of 
magnitude in a complex system, thus achieving a situation 
which is distinctly nonthermal. The reacting species are gas-
phase ions which are generated, stored for periods up to 1 s, and 
detected using the techniques of ion cyclotron resonance (ICR) 
spectroscopy. Full details of ICR spectroscopy,3'4 including 
modifications for infrared photochemistry,5 are published 
elsewhere. 

The equilibrium 

(CH3OH)H+(OH2) + CH3OH 

^ ( C H 3 O H ) 2 H + +H 2 O (1) 
k, 

is characterized by forward rate constant k{ = 5.0 X 1O-10 cm3 

mol-1 s_ l and reverse rate constant kT = 8.2 X 1O-15 cm3 

mol-1 s_ l . fcf is measured using ICR techniques, whereas kr 
is calculated from /cr and the equilibrium constant K. The value 
AG = -6.5 ± 1.0 kcal/mol6'7 for reaction 1 gives K = 6.1 X 
104 in favor of proton-bound methanol dimer, (CH3OH)2H+, 
at room temperature. 
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Figure 1. Variation of ion abundance with trapping time for the key ions 
derived from a mixture 1.9 X 10~6 Torr of H2O, 9.8 X 10"8 Torr of 
CH3OH, and 1.1 X 10"7 Torr of Br2CHCH3. Open symbols indicate 
unperturbed (CH3OH)2H+ (D), (CH3)2OH+ (O), and (CH3OH)-
H+(H2O) (O), and filled symbols are ion intensities during CW laser ir­
radiation (34 W/cm2 at 947 cm - 1) beginning at 0.5-s trapping time. 
Triangles indicate sum of the three ion intensities with (A) and without 
(A) laser irradiation. Ions are formed by a 70-eV, 10-ms electron beam 
pulse. 

During CW laser irradiation (y = 947 cm-1) at 34 W/cm2, 
the reverse reaction rate is enhanced by more than three orders 
of magnitude to kr

iR = 2.6 X 1O-" cm3mol_l s -1. ICR double 
resonance3'8 shows that the forward reaction is unaffected by 
laser irradiation.9 In addition to the infrared-driven bimolec-
ular reaction, the proton-bound methanol dimer undergoes 
multiphoton excitation followed by unimolecular decomposi­
tion: 

(CH3OH)2H+ —»• (CHj)2OH+ + H2O (2) 
nhv 

The reaction endothermicity, LH - 17 kcal/mol6'7 (corre­
sponding to seven infrared photons absorbed), represents the 
minimum energy needed for process 2. At a total energy of 33 
± 1 kcal/mol, (CH3OH)2H

+ dissociates to CH3OH2
+ and 

CH3OH.6'7 Failure to observe this process indicates that re­
action 2 requires <33 kcal/mol of excitation. 

At the pressures (<10~5 Torr) and ion trapping times (up 
to 1 s) used in these experiments, the proton-bound methanol 
dimer is not produced in pure methanol.7 A recently identified 
sequence of bimolecular reactions in a mixture of Br2CHCH3 
and H2O yields the proton-bound dimer of water.10 Sequential 
displacement of water from (H2O)2H+ by methanol yields the 
proton-bound dimer of methanol: 

(H20)2H+ + CH3OH 
— (CH3OH)H+(OH2) + H2O (3) 

(CH3OH)H+(OH2) + CH3OH 

-X(CH 3 OH) 2 H + -TH 2 O (4) 

Other reactions occur to form CH3OH2
+ and (CH3)2OH+ 

(processes 5 and 6). Details of the ion-molecule chemistry are 
given elsewhere.10 

H 3 O + -TCH 3 OH-CH 3 OH 2
+ -TH 2 O (5) 

CH3OH2
+ + CH3OH — (CH3J2OH+ -I- H2O (6) 

Figure 1 shows the temporal variation of ion abundance for 
those species involved in both bimolecular and unimolecular 
infrared-driven reactions 1 and 2. The other ions in the system 
are omitted for clarity. Open symbols indicate normalized 
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Figure 2. Semilog plot of fractional ion abundance vs. trapping time for 
laser induced reaction of (CH3OH)2H+ . Both double resonance ejection 
of (CH3OH)H+(OH2) and laser irradiation begin at 0.5 s. Neutral 
pressures and laser parameters are the same as in Figure I. 

intensities of (CH3OH)2H+, (CH3OH)H+(OH2), and 
(CH3)2OH+ in the unperturbed system. Irradiation beginning 
at 0.5 s of trapping time alters the intensities of the three ions 
as indicated by the filled symbols. All other ions present are 
unaffected by laser radiation. Also shown in Figure 1 are the 
summed intensities of (CH3OH)2H+, (CH3OH)H+(OH2), 
and (CH3)2OH+, both with (A) and without (A) laser irra­
diation. Invariance of the summed intensities to irradiation 
indicates these three ions are the only reactants and products 
of the infrared-driven reactions. 

Equations 7 and 8 govern the temporal abundance of the 
species of interest in this system: 

d[(CH3OH)2H+] m _ U ( C H 3 Q H ) 2 H + ] 

-,V1M(CH3OH)2H+] [H2O] 

+ ,M(CH3OH)H+(OH2)] [CH3OH] (7) 

d[(CH3OH)H+(OH2)] _ 

d/ 

-A:f[(CH3OH)H+(OH2)] [CH3OH] 

+ * r '
R[(CH3OH)2H+] [H2O] (8) 

At 0.5 s of trapping time, when laser irradiation starts, reaction 
3 has gone to completion and so is not included in eq 8. In 
Figure 1, the curve drawn through (laser on) data points for 
(CH3OH)H+(OH2) exhibits a maximum at ~850 ms. At the 
maximum, d[(CH3OH)H+(OH2)]/d* = 0 and *r

1R can be 
evaluated using eq 8 where the ion intensities are measured at 
850 ms. Substitution of the measured quantities in eq 8 gives 
kr

,R = 2.6 X 10-11Cm3ITiOl-1 s - ' . 
In a second experiment ICR double resonance was used to 

eject (CH3OH)H+(OH2) beginning at 0.5 s of trapping time. 
The time scale for ejection is short compared with the time 
between collisions.4,8 This reduces the concentration of 
(CH3OH)H+(OH2) to zero and prevents further formation 
of (CH3OH)2H+ (reaction 4). Equation 7 is now modified 
since the third term on the right-hand side becomes zero, 
predicting laser-induced decomposition of (CH3OH)2H+ to 
be pseudo first order (in dimer concentration) with an observed 
rate *obsd = ku + * r

I R [H 20] . Figure 2 shows a semilog plot 
of fractional (CH3OH)2H+ abundance (defined as the ratio 
of ion intensity with the laser on to the signal intensity with the 
laser off) as a function of trapping time when both ejection of 
(CH3OH)H+(OH2) and laser irradiation begin at 0.5 s. De­
composition is first order as predicted, with the negative of the 
slope of the straight line in Figure 2 equal to £0bsd =* 4.2 S-1. 
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Thus, ku = 2.6 s -1. For the laser power and neutral gas pres­
sures used, the unimolecular decomposition is favored over the 
laser-driven bimolecular reaction by a factor of 1.6:1. 

Both the forward and backward reactions in equilibrium 1 
proceed through a common intermediate, (CHaOH)2-
H+(OH2).11 The competitive dissocation of this species is 
evaluated using RRKM theory,12-14 where the internal energy 
is taken as absorbed infrared energy added to a 300 K 
Boltzmann distribution of vibrational energy. At an added 
energy of 10.5 kcal/mol the calculated ratio of H2O to 
CH3OH loss is equal to the observed value of k(/kT

,R = 19.8. 
This implies (CH3OHhH+ absorbs an average of 3.9 infrared 
photons (v = 947 cm -1) prior to bimolecular reaction with 
H2O. 

Selective excitation of reactants not only represents an in­
teresting tool for experimental chemical dynamics, it offers the 
possibility of using measured changes in reaction rates as a 
spectroscopic probe. The use of infrared excitation to alter 
bimolecular reaction rates should provide a general technique 
for obtaining vibrational spectra of ions and transient mole­
cules. 
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Resolution of Chiral Phosphamides 

Sir: 

The observation that the (—)-S isomer of cyclophosphamide 
(2- [bis(2-chloroethyl)amino]-2-oxo-1,3,2-oxazaphosphorinane, 
laj is more effective against PC6 mouse tumors than the ra-
cemic mixture resulted in the development of a number of 
synthetic methods leading to the optically active forms of 1 and 
related compounds. Thus, the enantiomers of 1 were obtained 
by the separation of the diastereomers based on the additional 
optically active center introduced in the starting amino alcohol2 

or directly in 1, using optically active naphthylphenylmeth-
ylsilyl chloride.3 Following the resolution of isophosphamide4 

(2), an interesting synthesis of the enantiomers of triphos-
phamide (3) was recently published,5 thus completing the 
picture. All of these methods except one3 involve multistep 

R1 

R1 R, R3 

1 H -CH3CH2Cl -CH2CHjCl 
2 -CH5CH2Cl H -CH2CH2Cl 
3 -CH2CH2Cl -CH2CH2Cl -CH2CH2Cl 

asymmetric synthetic processes and are not direct methods for 
resolution of 1-3. 

Possibly the simplest way to resolve 1 would involve sepa­
ration of complexes formed with optically active H donors. 
Based on the observation that la forms a stable crystalline 
monohydrate,6 it was expected that crystalline complexes with 
other H-bonding agents (alcohols, phenols) would be formed. 
No crystalline complexes of the anhydrous 1 were, however, 
obtained under various conditions,7 using (-f-)-ethyl lactate, 
(+^phenylephrine, (-f-)-quinine, or the optically active 1-
(dimethylamino)ethanol or its N-oxide, or with the more acidic 
1-trichloromethylethanol and 2-(a-hydroxyethyl)-4-nitro-
phenol. It is interesting to note that neither the pure S nor the 
R forms of 1 form monohydrate,8 only the racemic mixture. 

Here we report the optical resolution of the chiral phos­
phatide of the type 1 via its diastereomers of A -̂acyloxyalkyl 
type, as outlined in Scheme I. Thus, cyclophosphamide, (±)-l, 
can be transformed to the alkylol derivative 4, by dissolving 
anhydrous 1 in chloral. After reacting them at room temper­
ature overnight, the chloral excess was evaporated. The oily 
product was purified by chromatography on silica gel 
(CHClj-acetone, 9:1) and recrystallized from cyclohexane 
to give 4 in 50% yield: mp 125-128 0 C ; ' H NMR (CDCl3) 5 
7.5 (d, 1 H exchangeable in D2O), 5.5 (m, 1 H), 4.3 (m, 2 H), 
3.6 (m, 10 H), 2.1 (m, 2 H) ppm. The obtained racemic 4 was 
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